

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

REFORMA E AMPLIAÇÃO DA UNIDADE BÁSICA DE SAÚDE ELIOMAR BARRETO DOS SANTOS LOCALIZADO NO DISTRITO DE JAQUEIRA NO MUNICÍPIO DE PRESIDENTE KENNEDY –ES

MEMORIAL DE CÁLCULO

GERENCIAMENTO DE RISCO – SPDA (SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS)

Ivan de Souza Machado

Engenheiro Eletricista do Departamento de Eletrificação Urbana

Registro: CREA-RJ 2013135549/D

TEL: (28) 3535-1963

E-mail: eletrica.semob@presidentekennedy.es.gov.br

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

MEMORIAL DE CÁCULO - GERENCIAMENTO DE RISCO

1 DESCRIÇÃO GERAL

A norma NBR5419/2015 da Associação Brasileira de Normas Técnicas (ABNT) é responsável por definir os princípios para a elaborada dos estudos e projetos referentes a medidas de proteção das edificações contra descargas atmosféricas, posto que, conforme descrito nesta, não existem dispositivos ou métodos capazes de modificar os fenômenos climáticos naturais de maneira a prevenir a ocorrência das descargas atmosféricas, tendo em vista que este fenômeno gera riscos às pessoas, às estruturas e seus conteúdos e instalações.

Diante o exposto, a parte 2 da norma NBR5419/2015 define o gerenciamento de risco que é responsável por determinar a necessidade de proteção, os benefícios econômicos da instalação de medidas de proteção e a escolha destas, de modo a estabelecer os requisitos para análise de risco em uma estrutura devido às descargas atmosféricas para a terra. Destaca-se que as medidas a serem adotadas para o sistema de proteção contra descargas atmosféricas devem ser compatibilizadas com o projeto elétrico e de combate a incêndio, garantindo que a instalação possua ao menos dispositivos de proteção contra surtos (DPS), bem como, extintores, instalações fixas operadas manualmente, hidrantes, entre outros.

Destarte, o presente memorial tem por finalidade demonstrar os cálculos referentes ao gerenciamento de risco para avaliação das medidas de proteção a serem executadas para redução dos riscos das descargas atmosféricas na edificação da unidade básica de saúde Eliomar Barreto dos Santos localizada no distrito de Jaqueira no município de Presidente Kennedy - ES.

2 MEMORIAL DE CÁLCULO

2.1 Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
5.05 m	15.27 m	31.60 m

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 2188.44 \text{ m}^2$

2.2 Risco de perda de vida humana (R1) - Padrão

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

2.2.1 Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{4}-6$	4.54x10^-3/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	1
Pa = Pta x Pb	1x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	2112 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	2.41x10^-5

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

 $Ra = Nd \times Pa \times La$

 $Ra = 1.09x10^{-9}/ano$

2.2.2 Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{\circ}-6$	4.54x10^-3/ano
Pb (Probabilidade de uma descarga na estrutura causar	danos físicos) 1

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	2112 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.41x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 1.09x10^{-6/ano}$

2.2.3 Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

	Linhas de energia (E)		Linhas de telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
Al = 40 x Ll	40000 m²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)		4.15/km	n² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a seres vivos devidos a tensões de toque perigosas)	0.01
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.05

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pu = Ptu x Peb x Pld x Cld	5x10^-4	5x10^-4

Lu (valores de perda na zona considerada)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	2112 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	2.41x10^-5

Ru = Ru.E + Ru.T

 $Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$

 $Ru = 2x10^{-9}/ano$

2.2.4 Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1000 m	
Al = 40 x Ll	40000 m ²	40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra) 4.15/km² x ano			

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

	Linhas de (E)	energia	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os projetados)	DPS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pv = Peb \ x \ Pld \ x \ Cld$	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	2112 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.41x10^-4

Rv = Rv.E + Rv.T

 $\mathbf{R}\mathbf{v} = [(\mathbf{N}\mathbf{l}.\mathbf{E} + \mathbf{N}\mathbf{d}\mathbf{j}.\mathbf{E}) \times \mathbf{P}\mathbf{v}.\mathbf{E} \times \mathbf{L}\mathbf{v}] + [(\mathbf{N}\mathbf{l}.\mathbf{T} + \mathbf{N}\mathbf{d}\mathbf{j}.\mathbf{T}) \times \mathbf{P}\mathbf{v}.\mathbf{T} \times \mathbf{L}\mathbf{v}]$

 $Rv = 2x10^{-6/ano}$

2.2.5 Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

R1 = Ra + Rb + Ru + Rv

 $R1 = 3.1 \times 10^{-6}$

2.3 Risco de perdas de serviço ao público (R2) - Padrão

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

2.3.1 Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
Nd = Ng x Ad x Cd x 10^-6	4.54x10^-3/ano
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
$Lb = rp \ x \ rf \ x \ Lf \ x \ (nz/nt)$	5x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 2.27x10^{-6}/ano$

2.3.2 Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{4}-6$	4.54x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pc.E = Pspd.E x Cld.E, Pc.T = Pspd.T x Cld.T	5x10^-2	5x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	9.75x10^-2	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
Lc = Lo x (nz/nt)	1x10^-3

 $Rc = Nd \times Pc \times Lc$

 $Rc = 4.43x10^{-7/ano}$

2.3.3 Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	819533.95 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	3.4/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1.5
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	6.67x10^-1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	4.44x10^-1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	8x10^-3	2.22x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	3x10^-2	

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
Lm = Lo x (nz/nt)	1x10^-3

 $Rm = Nm \times Pm \times Lm$

 $Rm = 1.02x10^{-4}/ano$

2.3.4 Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ll (Comprimento da seção de linha)	1000 m	1000 m
Al = 40 x Ll	40000 m²	40000 m²
Ng (Densidade de descargas atmosférica	s para a terra) 4.15/k	m ² x ano

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de (E)	energia	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os projetados)	DPS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pv = Peb \ x \ Pld \ x \ Cld$	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
Lv = rp x rf x Lf x (nz/nt)	5x10^-4

Rv = Rv.E + Rv.T

 $Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$

 $Rv = 4.15x10^{-6}/ano$

2.3.5 Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ll (Comprimento da seção de linha)	1000 m	1000 m
Al = 40 x Ll	40000 m²	40000 m²
Ng (Densidade de descargas atmosférica:	s para a terra) 4.15/km	n² x ano

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pw = Pspd \ x \ Pld \ x \ Cld$	5x10^-2	5x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
Lw = Lo x (nz/nt)	1x10^-3

Rw = Rw.E + Rw.T

 $\mathbf{R}\mathbf{w} = [(\mathbf{N}\mathbf{l}.\mathbf{E} + \mathbf{N}\mathbf{d}\mathbf{j}.\mathbf{E}) \times \mathbf{P}\mathbf{w}.\mathbf{E} \times \mathbf{L}\mathbf{w}] + [(\mathbf{N}\mathbf{l}.\mathbf{T} + \mathbf{N}\mathbf{d}\mathbf{j}.\mathbf{T}) \times \mathbf{P}\mathbf{w}.\mathbf{T} \times \mathbf{L}\mathbf{w}]$

 $Rw = 8.3x10^{-6/ano}$

2.3.6 Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

	Linhas de energia (E)	Linhas de telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1000 m	
$Ai = 4000 \times Ll$	4000000 m²	4000000 m²	
Ng (Densidade de descargas atmosféricas para a terra) 4.15/km² x ano			

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Ni = Ng \times Ai \times Ci \times Ce \times Ct \times 10^{-6}$	8.3/ano	8.3/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	0.3	0.5
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	1.5x10^-2	2.5x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	50
nt (Número total de pessoas na estrutura)	50
Lz = Lo x (nz/nt)	1x10^-3

Rz = Rz.E + Rz.T

 $\mathbf{Rz} = (\mathbf{Ni.E} \times \mathbf{Pz.E} \times \mathbf{Lz}) + (\mathbf{Ni.T} \times \mathbf{Pz.T} \times \mathbf{Lz})$

 $Rz = 3.32x10^{-4/ano}$

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

2.3.7 Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$

 $R2 = 4.49x10^{-4}/ano$

2.4 Risco de perdas de patrimônio cultural (R3) - Padrão

Os resultados para risco de perda de patrimônio cultural levam em consideração os componentes de risco de descargas na estrutura e em uma linha conectada à estrutura.

2.4.1 Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1	
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano	
Nd = Ng x Ad x Cd x 10^-6	4.54x10^-3/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos) 1		

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
cz (Valor do patrimônio cultural na zona considerada) (R\$)	0
ct (Valor total da edificação e conteúdo da estrutura) (R\$)	1000000
$Lb = rp \ x \ rf \ x \ Lf \ x \ (cz/ct)$	0

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

2.4.2 Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1000 m	
Al = 40 x Ll	40000 m ²	40000 m²	
Ng (Densidade de descargas atmosféricas	s para a terra) 4.15/km	n² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de (E)	energia	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os projetados)	DPS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pv = Peb \ x \ Pld \ x \ Cld$	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
cz (Valor do patrimônio cultural na zona considerada) (R\$)	0
ct (Valor total da edificação e conteúdo da estrutura) (R\$)	1000000
$Lv = rp \ x \ rf \ x \ Lf \ x \ (cz/ct)$	0

Rv = Rv.E + Rv.T

 $\mathbf{R}\mathbf{v} = [(\mathbf{Nl.E} + \mathbf{Ndj.E}) \times \mathbf{Pv.E} \times \mathbf{L}\mathbf{v}] + [(\mathbf{Nl.T} + \mathbf{Ndj.T}) \times \mathbf{Pv.T} \times \mathbf{L}\mathbf{v}]$

Rv = 0/ano

2.4.3 Resultado de R3

O risco R3 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

R3 = Rb + Rv

R3 = 0/ano

2.5 Risco de perda de valores econômicos (R4) - Padrão

Os resultados para o risco de perda de valor econômico levam em consideração a avaliação da eficiência do custo da proteção pela comparação do custo total das perdas com ou sem as medidas de proteção. Neste caso, a avaliação das componentes de risco R4 devem ser feitas no sentido de avaliar tais custos.

2.5.1 Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1	
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano	
Nd = Ng x Ad x Cd x 10^-6	4.54x10^-3/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos) 1		

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Valor relativo médio típico de todos os valores atingidos pelos danos físicos devido a um evento perigoso)	1
ca (Valor dos animais na zona) (R\$)	0
cb (Valor da edificação relevante à zona) (R\$)	0
cc (Valor do conteúdo da zona) (R\$)	0
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
$Lb = rp \ x \ rf \ x \ Lf \ x \ ((ca+cb+cc+cs)/CT)$	5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 2.27x10^{-5/ano}$

2.5.2 Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{4}-6$	4.54x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pc.E = Pspd.E x Cld.E, Pc.T = Pspd.T x Cld.T	5x10^-2	5x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	9.75x10^-2	

Lc (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-2
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lc = Lo x (cs/CT)	1x10^-2

 $Rc = Nd \times Pc \times Lc$

 $Rc = 4.43x10^{-6}/ano$

2.5.3 Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	4.15/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	819533.95 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	3.4/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas telecomunicações (T)	de
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2	

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1.5
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	6.67x10^-1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	4.44x10^-1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	8x10^-3	2.22x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	3x10^-2	

Lm (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-2
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lm = Lo x (cs/CT)	1x10^-2

 $Rm = Nm \times Pm \times Lm$

 $Rm = 1.02x10^{-3/ano}$

2.5.4 Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ll (Comprimento da seção de linha)	1000 m	1000 m
Al = 40 x Ll	40000 m ²	40000 m ²
Ng (Densidade de descargas atmosférica	s para a terra) 4.15/km	n² x ano

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano
Peb (Probabilidade em função do NP para qual os projetados)	DPS foram 0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Valor relativo médio típico de todos os valores atingidos pelos danos físicos devido a um evento perigoso)	1
ca (Valor dos animais na zona) (R\$)	0
cb (Valor da edificação relevante à zona) (R\$)	0
cc (Valor do conteúdo da zona) (R\$)	0

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lv = rp x rf x Lf x ((ca+cb+cc+cs)/CT)	5x10^-3

Rv = Rv.E + Rv.T

 $Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$

 $Rv = 4.15x10^{-5/ano}$

2.5.5 Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ll (Comprimento da seção de linha)	1000 m	1000 m
Al = 40 x Ll	40000 m²	40000 m²
Ng (Densidade de descargas atmosféricas	s para a terra) 4.15/km	m ² x ano

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Nl = Ng \times Al \times Ci \times Ce \times Ct \times 10^{-6}$	8.3x10^-2/ano	8.3x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pw = Pspd \ x \ Pld \ x \ Cld$	5x10^-2	5x10^-2

Lw (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-2
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lw = Lo x (cs/CT)	1x10^-2

Rw = Rw.E + Rw.T

 $Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$

 $Rw = 8.3x10^{-5/ano}$

2.5.6 Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ll (Comprimento da seção de linha)	1000 m	1000 m

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

Ai = 4000 x Ll	4000000 m ²		4000000 m²	
Ng (Densidade de descargas atmosféricas para a terra)		4.15/km	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.5	0.5
$Ni = Ng \times Ai \times Ci \times Ce \times Ct \times 10^{-6}$	8.3/ano	8.3/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	5x10^-2	5x10^-2
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	0.3	0.5
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	1.5x10^-2	2.5x10^-2

Lz (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-2
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lz = Lo x (cs/CT)	1x10^-2

Rz = Rz.E + Rz.T

 $\mathbf{Rz} = (\mathbf{Ni.E} \ \mathbf{x} \ \mathbf{Pz.E} \ \mathbf{x} \ \mathbf{Lz}) + (\mathbf{Ni.T} \ \mathbf{x} \ \mathbf{Pz.T} \ \mathbf{x} \ \mathbf{Lz})$

 $Rz = 3.32x10^{-3/ano}$

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

2.5.7 Resultado de R4

O risco R4 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R4 = Rb + Rc + Rm + Rv + Rw + Rz$$

 $R4 = 4.49x10^{-3}/ano$

2.6 Avaliação do custo de perdas do valor econômico - Padrão

2.6.1 Resultado das perdas de valor econômico

As perdas de valor econômico são afetadas diretamente pelas características de cada tipo de perda da zona. O custo total de perdas da estrutura (CT) é o somatório dos valores estabelecidos para cada tipo de perda da estrutura e quando multiplicado pelo risco (R4) obtêm-se o custo anual de perdas (CL).

2.6.2 Custo total de perdas (ct)

O custo total de perdas (ct) é a somatória dos valores de perdas na zona, compreendendo o valor dos animais na zona (ca), o valor da edificação relevante à zona (cb), o valor do conteúdo da zona (cc) e o valor dos sistemas internos incluindo suas atividades na zona (cs). O seu valor calculado é monetário.

$$ct = ca + cb + cc + cs$$

ct = 0

2.6.3 Custo total de perdas da estrutura (CT)

O custo total de perdas da estrutura (CT) é a somatória dos valores de perdas de todas as zonas da estrutura. O seu valor calculado é monetário.

$$CT = ct (z1) + ... ct (zn)$$

CT = 0

2.6.4 Custo anual de perdas (CL)

O custo anual de perdas (CL) é a multiplicação entre o custo total de perdas (CT) e o risco (R4), na qual contribui para análise do risco econômico total da estrutura. O seu valor calculado é monetário.

 $CL = CT \times R4$

CL = 0

Estado do Espírito Santo Secretaria Municipal de Obras e Habitação

2.7 Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2	R3	R4
Estrutura	0.3099x10^-5	0.449x10^-3	0	4.49x10^-3

Foram avaliados os seguintes riscos da estrutura:

2.7.1 R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 0.3099 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R <= 10^-5

2.7.2 R2: risco de perdas de serviço ao público

 $R2 = 0.449 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois $R \le 10^{-3}$

2.7.3 R3: risco de perdas de patrimônio cultural

R3 = 0/ano

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R $<= 10^{4}$

2.7.4 R4: risco de perda de valor econômico

 $R4 = 4.49 \times 10^{-3}$ ano

2.7.5 CT: custo total de perdas de valor econômico da estrutura (valores em \$)

CT = 0

2.7.6 CL: custo anual de perdas (valores em \$)

CL = 0